

Closs Quiz
1) Simplify:
$$(-4x^5)^3 = (-4)^3 (x^5)^3 = -64x^{15}$$

a) $(x^{-4})^5 \cdot x^8 = x^{-20} \cdot x^8 = x^{-12} = 12^{-12}$
3) Sind the area of
 $A = (3x + 2)(3x - 2)$
 $= 9x^2 - 6x + 6x - 4 \Rightarrow A = 9x^2 - 4$

Ch. 5: Factoring
Writing a Polynomial as a product
of other polynomials
1) GCF: Greatest Common Factor

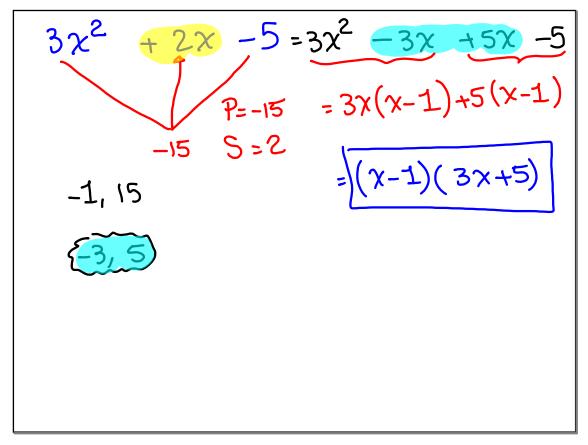
$$15x + 25 = 5.3x + 5.5$$

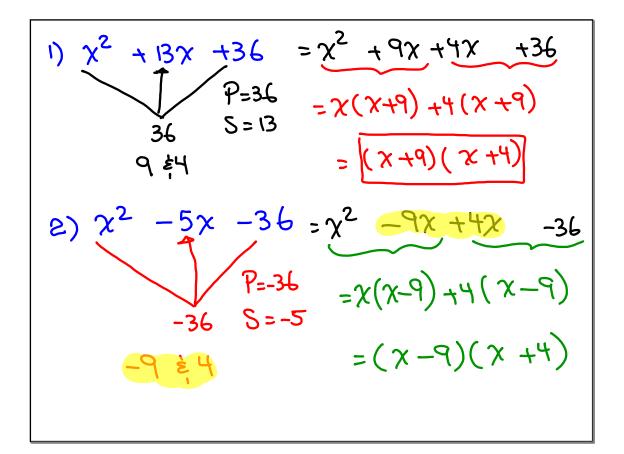
 $= 5(3x + 5)$

3)
$$17\chi(2\chi - 5) - 4(2\chi - 5)$$

 $= (2\chi - 5)(17\chi - 4)$
Factor by grouping (4 terms or more)
 $2\chi^{3} + 5\chi^{2}$ + 4 χ + 10
 $= \chi^{2}(2\chi + 5) + 2(2\chi + 5)$
 $= (2\chi + 5)(\chi^{2} + 2)$

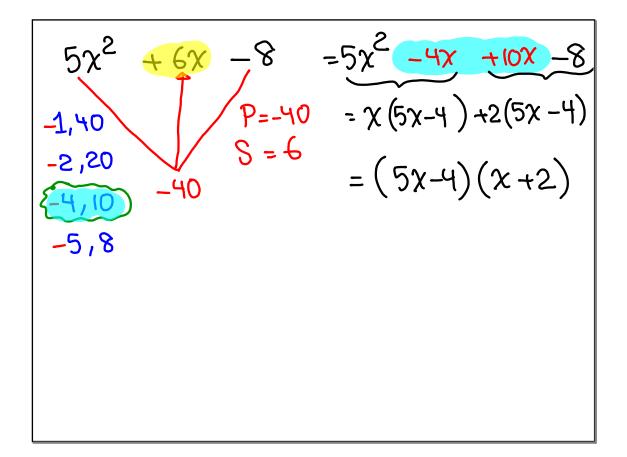
$$\frac{7\chi^{3} - 8\chi^{2}}{2} + \frac{21\chi - 24}{4\chi^{2} - 8} + 3(7\chi - 8)$$


$$= (7\chi - 8)(\chi^{2} + 3)$$


$$\frac{4\chi^{4} + 9\chi^{3} - 8\chi^{2} - 18\chi}{4\chi^{3} + 9\chi^{2} - 8\chi - 18} = (\chi(4\chi + 9)(\chi^{2} - 2))$$

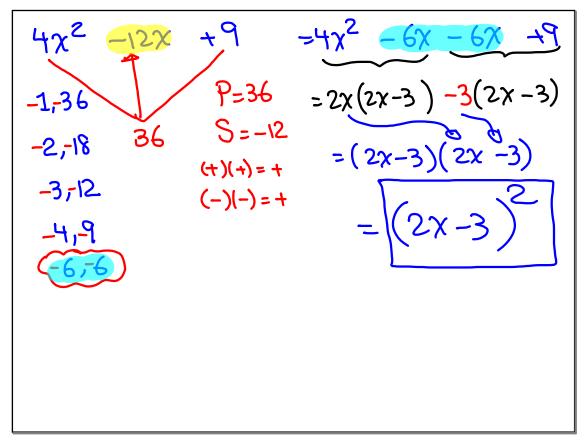
Factor:
1)
$$55x^{4} - 22x^{3} = 11x^{3}(5x - 2)$$

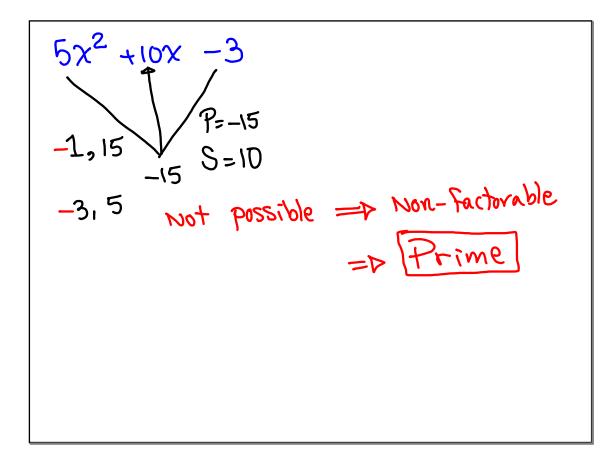
2) $3x^{2}(2x-5) - 4x(2x-5) + 10(2x-5)$
 $= (2x-5)(3x^{2}-4x+10)$
3) $3x^{3} + 4x^{2} - 6x - 8$
 $= x^{2}(3x + 4) - 2(3x + 4) = (3x + 4)(x^{2}-2)$


Factoring Trinomials in the form of

$$0 \chi^2 + b\chi + C ; 0 \neq 0$$

 $3\chi^2 + 5\chi + 2 = 3\chi^2 + 3\chi + 2\chi + 2$
 $p=6$
 $5=5$
 $1, 6$
 $(\chi+1)(3\chi+2)$
 $2, 3$





October 3, 2017

Special Factoring:
Two terms
1)
$$A^{2} + B^{2} \Rightarrow Prime$$

2) $A^{2} - B^{2} = (A + B)(A - B)$
3) $A^{3} + B^{3} = (A + B)(A^{2} - AB + B^{2})$
4) $A^{3} - B^{3} = (A - B)(A^{2} + AB + B^{2})$

$$\chi^{2} + 25 = \chi^{2} + 5^{2} \qquad \text{Prime}$$

$$\chi^{2} - 49 = \chi^{2} - 7^{2} = (\chi + 7)(\chi - 7)$$

$$64\chi^{2} - 25 = (8\chi)^{2} - (5)^{2}$$

$$= (8\chi + 5)(8\chi - 5)$$

$$49\chi^{2} + 100 = (7\chi)^{2} + (10)^{2}$$

$$= \text{Prime}$$

 $121x^{2} - 36y^{2} = (11x)^{2} - (6y)^{2}$ = (11x + 6y)(11x - 6y) $64\chi^2 - 49\gamma^2 = (8\chi)^2 - (7\gamma)^2$ = (8x +7y)(8x -7y)

$$A^{3} + B^{3} = (A + B)(A^{2} - AB + B^{2})$$

$$\chi^{3} + 8 =$$

$$\chi^{3} + 2^{3} = (\chi + 2)(\chi^{2} - 2\chi + 4)$$

$$\chi^{3} + 125 =$$

$$\chi^{3} + 5^{3} = (\chi + 5)(\chi^{2} - 5\chi + 25)$$

$$8x^{3} + 27 =$$

$$(2x)^{3} + (3)^{3} = (2x + 3)(4x^{2} - 6x + 9)$$

$$64x^{3} + 125y^{3} =$$

$$(4x)^{3} + (5y)^{3} = (4x + 5y)(16x^{2} - 20xy + 25y^{2})$$

$$A^{3} - B^{3} = (A - B)(A^{2} + AB + B^{2})$$

$$\chi^{3} - 1000 =$$

$$\chi^{3} - 10^{3} = (\chi - 10)(\chi^{2} + 10\chi + 100)$$

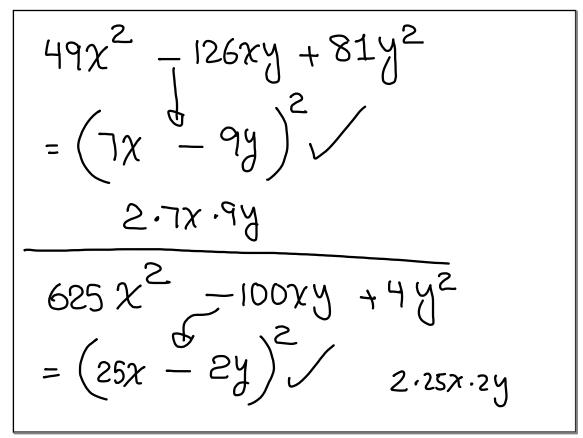
$$8\chi^{3} - 343 =$$

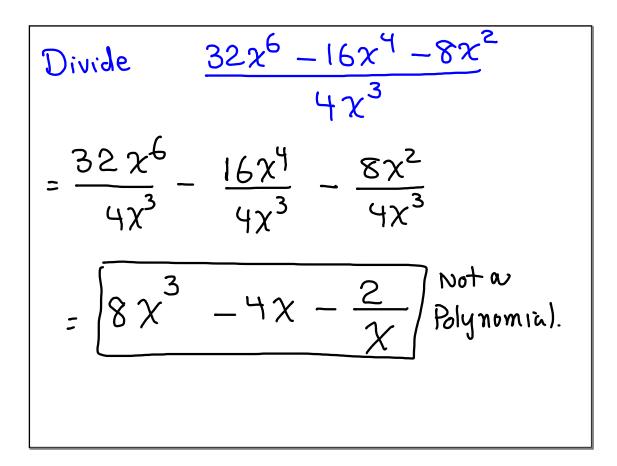
$$(2\chi)^{3} - (7)^{3} = (2\chi - 7)(4\chi^{2} + 14\chi + 49)$$

$$\begin{aligned} & 125\chi^{3} - 27y^{3} = \\ & (5\chi)^{3} - (3y)^{3} = (5\chi - 3y)(25\chi^{2} + 15\chi + 9y^{2}) \\ & \chi^{8} - 256 = (\chi^{4})^{2} - (16)^{2} \\ & = (\chi^{4} + 16)(\chi^{4} - 16) \\ & = (\chi^{4} + 16)(\chi^{2} + 4)(\chi^{2} - 4) \\ & = (\chi^{4} + 16)(\chi^{2} + 4)(\chi + 2)(\chi - 2)) \end{aligned}$$

Special Factoring with Trinomials

$$A^{2} + 2AB + B^{2} = (A + B)^{2}$$


$$A^{2} - 2AB + B^{2} = (A - B)^{2}$$


$$Perfect - Square Trinomial$$

$$\chi^{2} + 20\chi + 100 = (\chi + 10)$$

$$\sum_{k=0}^{2} 2 \cdot \chi \cdot 10$$

$$25\chi^{2} + 40\chi + 16 = (5\chi + 4)^{2}$$

October 3, 2017

Divide
$$\chi^{4} - 5\chi^{2} - 36$$

 $\chi^{2} = \chi^{4}$ $\chi^{2} - 9$
 $\chi^{2} = -\chi^{4}$ $\chi^{2} - 9$
 $\chi^{2} = -\chi^{4}$ $\chi^{2} - 9$
 $\chi^{2} - 9$
 $\chi^{2} + 9$
 $\chi^{2} - 9$
 $\chi^{4} + 0\chi^{3} - 5\chi^{2} + 0\chi - 36$
 $-(\chi^{4} - 9\chi^{2})$
 $+\chi^{2} + 0\chi - 36$
 $-(\chi\chi^{2} - 4\chi)$

Area of a vectoriale is

$$5\chi^{3} - 2\chi^{2} + 4\chi - 7$$
. $A = LW$
the width is $\chi - 1$. $\frac{H}{W} = L$
find its length.
 $\chi = 5\chi^{3}$
 $\chi = 3\chi^{2}$
 $\chi = -1(5\chi^{3} - 2\chi^{2} + 4\chi - 7)$
 $\chi = -3\chi^{2}$
 $\chi = -1(5\chi^{3} - 5\chi^{2})$
 $\chi = -1(5\chi^{3} - 5\chi^{3})$
 $\chi = -1(5\chi^{$